Data engineer vs data scientist. Belum lagi ada profesi lain yang serupa yaitu data analyst. Ketiga profesi ini memiliki nama yang mirip dan nggak jarang dianggap sama. Sebenarnya ketiganya saling terkait. Bidang pekerjaan yang dilakukan juga bisa sama. Lalu, apa yang membuat berbeda?Data engineer, data scientist dan data analyst. Sebuah perpaduan profesi-profesi yang mengelola hal serupa, tapi punya tugas yang berbeda. Kita bahas selengkapnya di bawah ini. Baca sampai selesai ya, dari unsplashData engineerData engineer adalah profesi yang mengerjakan tugas paling awal dalam proses pengolahan big data. Profesi ini bertugas menyajikan data-data berkualitas yang bisa digunakan untuk proses selanjutnya. Data-data yang sudah siap akan diolah oleh profesi scientistSambil menunggu data disajikan oleh data engineer, data scientist memiliki tugas untuk membuat kerangka pengolahan data. Apa saja yang akan dilakukan, bagaimana model pengolahan data yang pas dan seperti apa penjabaran hasilnya. Model ini akan menjadi pedoman data engineer dalam penyusunan data. Setelah big data berhasil disajikan, barulah data scientist akan melakukan analisis dan AnalystProfesi ini hampir mirip dengan profesi sebelumnya. Terkadang, perusahaan membebankan tugas data analyst pada posisi data scientist. Tugas utamanya untuk mengolah dan membuat laporan hasil analisis biasanya dilimpahkan kepada para data TugasMungkin kamu sudah lebih paham apa yang membedakan ketiga profesi di atas. Jika dibuat lebih rinci, pembagian tanggung jawab ketiga profesi ini adalah sebagai berikutData engineerData engineer bertanggung jawab untukMengelola data pipelineMenyiapkan data yang bisa diakses oleh berbagai pihakMelakukan implementasi model yang telah disusun oleh data scientistMengelola dataData scientistBerbeda dengan data engineer yang tugasnya memang sangat erat dengan big data yang dimiliki, data scientist harus menggunakan pendekatan yang lebih luas. Bukan hanya berurusan dengan IT, tapi juga statistika dan ekonomi. Mereka bertanggung jawab untuk melakukan beberapa hal ini;Membuat model pengolahan dataMengolah data yang dimilikiMenjabarkan makna data tersebut ke dalam bahasa yang mudah dipahami dalam bisnisData analystBeda juga dengan profesi yang ketiga ini, Sob. Tanggung jawab analyst lebih condong pada tanggung jawab untuk melakukan analisis data dan menyajikan hasil analisis tersebut dalam bentuk dan keterampilan yang dibutuhkanSecara umum, keahlian yang dibutuhkan ketiga profesi ini hampir sama. Skill yang dibutuhkan meliputi bahasa pemrograman, matematika, statistika, dan bisnis. Skill yang dibutuhkan data engineer lebih condong pada bahasa pemrograman seperti Phyton. Mereka perlu menguasai algoritma, data pipeline dan infrastruktur yang perlu dikuasai data scientist dan data analyst meliputi teknologi informasi, bahasa pemrograman, matematika, statistika. Khusus data scientist disarankan juga untuk memahami bisnis dan pemasaran. Kolaborasi skill di bidang-bidang tersebut menjadi bekal penting untuk menjalankan paham kan, Sob? Ketiga profesi di atas memang bekerja di ranah yang sama. Namun, mereka punya tugas dan tanggung jawabnya kamu tertarik menjadi salah satunya, pastikan kamu sudah benar-benar paham tentang profesi tersebut. Perkaya dirimu dengan bekal skill yang keren. Lumayan lho, Sob! Peluang kariernya besar banget di era big data seperti sekarang bisa mendapatkan informasi seputar profesi bidang teknologi informasi lainnya di blog Jagoan Hosting. Jagoan Hosting, penyedia layanan VPS Indonesia dan Hosting Terbaik. Jagoan Hosting selalu memberikan informasi seputar teknologi, bisnis, game, anime, dan topik-topik menarik years of experience in providing readers with the latest insights and best practices in various fields related to Business, Technology, WordPress, Website Development and Digital Marketing.
1 Berdasarkan Peran dan Tanggung Jawabnya. Data analyst dan data Scientist memiliki peran yang berbeda. Dua pekerjaan ini memiliki perbedaan dalam peran dan tanggung jawabnya. Data analyst terlibat untuk mencari alasan mengapa suatu hal dapat terjadi, sedangkan data scientist lebih memperhatikan apa yang akan dan dapat terjadi di depan. “Data Analyst, Data Scientist, sama Data Engineer itu sama aja ya kak?”Pertanyaan tersebut banyak muncul dari para calon student RevoU atau mereka yang masih awam, namun tertarik untuk mendalami karir di bidang sama-sama role di bidang data, namun tugas dan tanggung jawab di setiap role tersebut berbeda lho!Di artikel ini, kamu akan mendapatkan informasi tentangApa itu Data Analyst, Data Scientist, dan Data EngineerApa tugas dan tanggung jawab mereka sehari-hariApa skill yang dibutuhkan sebagai Data Analyst, Data Scientist, dan Data EngineerApa itu...Data AnalystSeorang Data Analyst biasanya bekerja dengan data yang terstruktur untuk menyelesaikan permasalahan bisnis menggunakan tools seperti bahasa pemrograman SQL, R atau Python, software untuk visualisasi data, dan analisis statistik. Data Analyst bertugas untuk menganalisis semua angka dan data, dan menterjemahkannya ke dalam bahasa kita sehari-hari. Data ini digunakan oleh para stakeholders untuk membuat keputusan ScientistSeorang Data Scientist biasanya menangani hal-hal yang tidak diketahui dan lebih complex dengan menggunakan teknik data yang lebih advanced untuk membuat prediksi tentang masa depan. Data Scientist juga biasa mengotomatiskan algoritma Machine Learning atau mendesain proses pemodelan prediktif yang dapat menangani data yang terstruktur maupun tidak. Role ini umumnya dianggap sebagai versi yang lebih advanced dari role Data Analyst, dan agak mirip dengan Data Engineer. Namun, Data Scientist lebih expert dalam pembuatan keputusan decision making EngineerSeorang Data Engineer bekerja untuk membangun sebuah sistem yang dapat mengumpulkan, mengelola, dan mengubah data mentah menjadi informasi yang dapat digunakan untuk ditafsirkan oleh Data Scientist dan Business Analyst. Mereka membuat pipeline data untuk mengumpulkan berbagai macam infomasi dan berbagai sumber. Tujuan utama mereka adalah membuat data yang dapat diakses sehingga organisasi bisa menggunakannya untuk mengevaluasi dan mengoptimalkan kinerja dan Tanggung JawabHal yang sangat berbeda antara role Data Analyst, Data Scientist, dan Data Engineer adalah apa yang mereka lakukan dengan data yang AnalystTugas umum seorang Data Analyst termasukBerkolaborasi dengan pemimpin organisasi untuk mengidentifikasi informasi yang dibutuhkanMemperoleh data dari sumber primer dan sekunderMembersihkan dan menata ulang data untuk analisisMenganalisis kumpulan data untuk melihat tren dan pola yang dapat diterjemahkan ke dalam insights yang bisa ditindaklanjutiMempresentasikan temuan dengan cara yang mudah dipahami untuk membantu proses decision making Data ScientistBeberapa tugas sehari-hari mungkin termasukMengumpulkan, membersihkan, dan memproses data mentah raw dataMerancang model prediktif dan algoritma Machine Learning untuk data miningMembuat atau mengembangkan tools dan proses untuk memantau dan menganalisis akurasi dataMembuat alat visualisasi data, dasbor, dan laporanMenulis program untuk mengotomatiskan pengumpulan dan pemrosesan dataData EngineerBeberapa tugas umum seorang Data EngineerMendapatkan kumpulan data datasets yang sesuai dengan kebutuhan bisnisMembuat algoritma untuk mengubah data menjadi informasi yang berguna dan actionableMembangun, menguji, dan me-maintain arsitektur pipa databaseBerkolaborasi dengan manajemen untuk memahami tujuan perusahaanMembuat metode validasi data dan alat analisis data baruMemastikan kepatuhan terhadap tata kelola data data governance dan kebijakan keamanan security policiesSkill-Set yang DibutuhkanTabel di bawah ini mengilustrasikan tentang skill-skill yang dibutuhkan untuk menjadi seorang Data Analyst, Data Scientist, dan Data EngineerYuk, mulai karir Data Analytics mu dengan RevoU!Jika kamu berminat untuk berkarir di bidang Data Analytics, wajib bagi kamu untuk memperkuat skill yang dibutuhkan!Berikut adalah beberapa program yang bisa kamu ikutiRevoU Mini CourseDurasi 1 mingguFormat kelas live interaktif WIBMateri tentativeProgram ini cocok untuk kamu yang baru ingin mengenal terkait Data Analytics, dan ingin merasakan pengalaman belajar di RevoU tanpa dipungut program ini lebih lanjut di Mini Course RevoURevoU Full Stack Data AnalyticsDurasi 13 minggu + 3 bulan RevoU Labs Format kelas live WIBMateri Fundamental Data Analytics, Advanced SQL, Phyton, and moreProgram ini cocok untuk kamu yang ingin memulai karir di Data Analytics. Program ini memiliki jaminan kerja up to 100%.Pelajari program ini lebih lanjut di Full Stack Data Analytics RevoU Insights Demir enjoys analytics & creativity. Graduated from Business School, she believes that content is a powerful way to not only educate & engage people but also get traffic & leads! RevoU - The Journal Newsletter Join the newsletter to receive the latest updates in your inbox. Your email address Please check your inbox and click the link to confirm your subscription. Please enter a valid email address! An error occurred, please try again later. Terkaitdengan SDM di bidang data, ada tiga profesi yang populer di bidang ini yaitu data analyst, data engineer, dan data scientist. Meskipun ketiga profesi tersebut sama-sama berkutat di bidang data, namun ketiganya memiliki perbedaan. Berikut ini penjelasan mengenai perbedaan dari ketiganya. 1. Data AnalystData Enthusiast DigitalBisa UntukIndonesiaLebihBaik Data science menjadi perbincangan dan trend-center bagi para penggiat teknologi di bidang statistika. Sebenarnya, data science itu apa? Melansir dari Oracle, data science merupakan ilmu yang menggabungkan berbagai bidang, termasuk statistik, metode ilmiah, kecerdasan buatan AI, dan analisis data, untuk mengekstrak nilai dari data. Penggabungan berbagai keterampilan untuk menganalisis data yang dikumpulkan dari web, smartphone, pelanggan, sensor, dan sumber lain untuk mendapatkan wawasan yang bisa untuk di olah. Mengapa Data Science Sangat Penting? Ilmu ini sangat menarik saat ini. Lalu, mengapa data science sangat penting? Karena perusahaan sangat membutuhkan data science. Teknologi modern telah memungkinkan penciptaan dan penyimpanan peningkatan jumlah informasi dan volume data telah meledak. Diperkirakan bahwa 90 persen dari data di dunia diciptakan dalam dua tahun terakhir. Kebanyakan data hanya berada di database dan tidak tersentuh untuk diolah. Pengelolaan data sangat dibutuhkan agar lebih tersusun dan lebih transformatif untuk dapat memberikan suatu keputusan bagi perusahaan. Data science mengungkapkan tren dan menghasilkan wawasan yang dapat digunakan bisnis untuk membuat keputusan yang lebih baik dan menciptakan produk dan layanan yang lebih inovatif. Mungkin yang paling penting, ini memungkinkan model pembelajaran mesin ML untuk belajar dari sejumlah besar data yang diumpankan kepada mereka, daripada terutama mengandalkan analis bisnis untuk melihat apa yang dapat mereka temukan dari data. Data Scientist, Data Analyst dan Data Engineer Tentu saja pekerjaan di bidang data science sangat dibutuhkan di era saat ini. Banyak perusahaan yang mencari talenta digital terkait data science. Berikut beberapa role pekerjaan di bidang data science, diantaranya 1. Data Scientist Seorang data scientist menganalisis dan menafsirkan data digital yang kompleks untuk membantu para pemimpin bisnis membuat keputusan yang lebih baik berdasarkan data. Data scientist memiliki pengetahuan dan keahlian yang mendalam dalam matematika aljabar linier dan kalkulus multivariabel yang telah mereka peroleh dengan mendapatkan gelar dalam disiplin ilmu pengetahuan. Berikut role dari data scientist, diantaranya Membersihkan dan mengumpulkan data berkualitas untuk melatih algoritma Mengidentifikasi pola tersembunyi dalam kumpulan data Membangun model pembelajaran mesin Visualisasi data Menyempurnakan metrik bisnis dengan mengembangkan dan menguji hipotesis 2. Data Analyst Apa itu analis data? Data analyst adalah menguraikan angka dan menerjemahkannya menjadi kata-kata untuk menjelaskan apa yang dikatakan data. Mendapatkan pekerjaan analis data tidak memerlukan latar belakang matematika yang kuat. Namun, mereka tidak dapat berjalan dengan baik dalam peran ini tanpa pemahaman dalam statistik, pre-processing, visualisasi data dan analisis EDA, dan tentu saja, kemahiran dalam Excel. Mengumpulkan data berdasarkan permintaan tertentu dari perusahaan. Membiasakan diri dengan parameter kumpulan data jenis data, bagaimana hal itu dapat diurutkan. Pre-processing memastikan data bebas dari kesalahan. Menafsirkan data dan menganalisis cara-cara memecahkan masalah bisnis. Menarik kesimpulan dari analisis. Memvisualisasikan dan mempresentasikan temuan kepada manajer. 3. Data Engineer Data engineer bertanggung jawab untuk membangun, menguji dan memelihara arsitektur data. Tujuannya adalah untuk membangun dan mengoptimalkan sistem perusahaan yang memungkinkan bagi data analyst dan data scientist menyelesaikan pekerjaan mereka. Kamu harus memiliki keahlian di bidang programming, big data, dan matematika. Selain itu, arsitektur data yang disiapkan oleh data engineer membuat dasar untuk penggunaan data lebih lanjut, termasuk Penyerapan dan penyimpanan data. Pembuatan algoritma. Penyebaran model dan algoritma machine learning. Visualisasi data. Nah, gimana nih sudah tertarik bekerja di bidang data science? Role apa yang akan kamu ambil? Referensi What is Data Science? Oracle Data Engineer vs. Data Scientist vs. Data Analyst NCube
Karenatujuan utama data engineer adalah membuat data dapat diakses secara maksimal agar data scientist dan data analyst dapat mengoptimalkan kinerja mereka. Mereka mengembangkan, membangun, menguji dan memelihara arsitektur database dalam skala besar untuk memastikan bahwa kebutuhan bisnis terpenuhi serta menyediakan dan menerapkan cara untuk meningkatkan keandalan, efisiensi, dan kualitas data. Data Analyst HAEffr.